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Measuring linearity of planar point sets
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Abstract

Our goal is to design algorithms that give a linearity measure for planar point sets. There is no explicit discussion on linearity in literature,
although some existing shape measures may be adapted. We are interested in linearity measures which are invariant to rotation, scaling, and
translation. These linearity measures should also be calculated very quickly and be resistant to protrusions in the data set. The measures of
eccentricity and contour smoothness were adapted from literature, the other five being triangle heights, triangle perimeters, rotation correlation,
average orientations, and ellipse axis ratio. The algorithms are tested on 30 sample curves and the results are compared against the linear
classifications of these curves by human subjects. It is found that humans and computers typically easily identify sets of points that are clearly
linear, and sets of points that are clearly not linear. They have trouble measuring sets of points which are in the gray area in-between. Although
they appear to be conceptually very different approaches, we prove, theoretically and experimentally, that eccentricity and rotation correlation
yield exactly the same linearity measurements. They however provide results which are furthest from human measurements. The average
orientations method provides the closest results to human perception, while the other algorithms proved themselves to be very competitive.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The main motivation for this work is in image processing.
Measuring the linearity of a finite set of points can become an
interesting way of identifying the important components of a
picture. Linear points are interesting since they often represent
a region of interest in an image. Most man made structures or
objects have strong straight lines that are easily identifiable.
By dissecting an object into an ordered collection of lines, the
object becomes more easily identifiable; visually and compu-
tationally. There are a variety of methods to extract edges from
images. Objects such as cars or tables in such edge represen-
tations of images are still easily recognizable by humans—the
whole is more than just the sum of its parts (edges in our case).
This leads to interesting possibilities for the domain of com-
puter vision in the sense that useful information can be extracted
from images just by examining the edges.
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Here, we are interested in measuring linearity of a finite set
of points in a plane. In analyzing various algorithms, we align
ourselves with the following criteria. We are interested in as-
signing linearity values to sets of points. The linearity value is
preferred to be a number from [0, 1] if such a normalization
is possible. Naturally, it is preferred that the highest possible
measured linearity correspond to a perfectly linear shape—i.e.
to the sets whose points belong to a line. The linearity value
of a given shape equals 1 if and only if the shape is linear,
and the linearity value equals 0 when the shape is circular or
has another form which is highly non-linear such as a spiral.
A shape’s linearity value should be invariant under similarity
transformations of the shape, such as scaling, rotation and trans-
lation. Linearity values should also be computed by a simple
and fast algorithm.

It is very important to stress that points in the set are not
ordered. This means that curves such as ellipses or rectangles
which are very flat (long and thin) are considered to be highly
linear. If we were to consider ordered sets of points, such el-
lipses would be highly nonlinear. Because the set of points is
not ordered, permutations of the input set should not affect the
linearity value.
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The closest applications of shape analysis to our article in
this field are measuring convexity [1–4], rectilinearity [5], rect-
angularity [6,7], ellipticity [7], sigmoidality [8] and circularity
[9]. We have not found a concrete discussion on measuring lin-
earity. Some sources in literature make references to measure-
ments that could be used to test linearity, but they use them for
other purposes. For example, the measures of eccentricity and
contour smoothness are developed for testing circularity, yet
they are also used here for testing linearity. Measuring convex-
ity is a popular problem, but one that cannot easily be applied
here. Rectilinearity was discussed in literature and can be ap-
plied to finding man made settlements in satellite imagery [5].
Some rectangularity measures may be modified to measure lin-
earity. Rectangles which are long, yet narrow, may represent
lines. Some algorithms which measure rectangularity are sen-
sitive to protrusions in the data set. For example, a smallest
enclosing box can be used to measure rectangularity [6]; how-
ever, small irregularities in the data set can seriously affect the
performance of this metric.

Here, we will propose and analyze several algorithms that
assign linearity values to sets of points. They are called: aver-
age orientations, rotation correlation, triangle heights, triangle
perimeters, contour smoothness, eccentricity, and ellipse axis
ratio. Contour smoothness and eccentricity were adapted from
measures of circularity.

The rotation correlation and average orientation schemes first
find the orientation line of the set of points using moments. The
average orientations method takes k pairs of points and finds
the unit normals to the lines that they form. The unit normals
all point in the same direction (along the normal to the orienta-
tion line). The average normal value (A, B) of all of the k pairs
is found, and the linearity value is calculated as

√
A2 + B2.

In the rotation correlation method, the set of points is then ro-
tated such that its orientation line is 45◦ from the x-axis. This
rotation is performed to give equal weights to both the x and
y coordinate values in the correlation formula. Correlation is
performed on the rotated set of points to determine linearity.
Triangle heights takes an average value of the relative heights
of triangles formed by taking random triplets of points, nor-
malized so that we obtain a linearity value in the interval [0, 1].
Relative heights are heights that are divided by the correspond-
ing longest side of the triangle. ‘Triangle perimeters’ takes the
normalized, average value of the area divided by the square
of the perimeter of triplets of points as its linearity measure.
Contour smoothness and eccentricity are simple formulas in-
volving moments that were found in literature [9], and adapted
here to finding linearity. We prove, theoretically and experi-
mentally, that the eccentricity and rotation correlation methods
give same linearity measures. Ellipse axis ratio is based on the
minor/major axis ratio of the best ellipse that fits the set of
points.

The literature review is given in Section 2. Linearity mea-
sures are presented in Section 3. The results of the algorithms
along with the comparison to the linearity classification of the
shapes by humans are presented in Section 4. The algorithms
were tested on a set of 30 shapes. These shapes were assembled
by hand and are meant to cover a wide variety of non-trivial

curves. The most interesting finding is that the rotation correla-
tion method produces identical results on the set of test shapes
to the eccentricity method. These two linearity measures are
conceptually completely different, yet we show here that they
are in fact the same measure. The closest one to human per-
ception was the measure obtained from the contour smoothness
algorithm. The methods based on sampling k pairs or triplets
were faster than others, yet gave reasonably accurate linearity
measures. Linearity values for large values of k gave similar
results to linearity values for reasonable values of k such as
250–500.

2. Literature review

We will describe several well known functions on finite sets
of points that are used in our linearity measures here.

2.1. Discussion on geometric moments for point sets,
orientation and correlation

The central moment of order pq of a set of points Q is
defined as

�pq =
∑

x,y∈Q
(x − xc)

p(y − yc)
q ,

where S is the number of points in the set Q, and (xc, yc)

is the center of mass of the set Q. The center of mass is the
average value of each coordinate in the set, and is determined as
follows:

(xc, yc)=
(

1

S

∑
xi,

1

S

∑
yi

)
,

where (xi, yi), 1� i�S, are real coordinates of points from Q.
The angle of orientation of the set of points Q is determined
by [9]

angle= 0.5 arctan

(
2�11

�20 − �02

)
.

The orientation line (also called the ‘axis of the last second
moment of inertia’) is a line that minimizes the sum of squares
of distances from points in the set. It is well known that the
orientation line passes through the origin, and its slope is deter-
mined by the above given angle. Since angle+ �/2 also satis-
fies the same equation, algorithms based on this formula need
to verify two candidate orientation lines.

All definitions are applied on a set of points with real co-
ordinates. In our examples, we use the moment calculations
on just the finite set of points located on a closed or open
curve.

We find that the orientation of the border points of a
closed curve is almost identical to the orientation of all of
the digital points inside the closed curve. We are especially
interested in digitized curves because they are used in our
experiments.
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Correlation is another well known function that is used in
this article. It returns a correlation value between −1 and 1:

correlation

=
∑count

i=0 xiyi −
∑count

i=1 xi

∑count
i=1 yi

count√∑count
i=1 x2

i −
(
∑count

i=1 xi)
2

count

√∑count
i=1 y2

i −
(
∑count

i=1 yi)
2

count

.

2.2. Relevant shape measures

The most relevant and applicable shape measure to our work
is the measuring of rectangularity. The standard method for
measuring rectangularity is to use the ratio of the region’s area
against the area of its minimum bounding rectangle (MBR) [6].
A weakness of using the MBR is that it is very sensitive to
protrusions from the region. A narrow spike out of the region
can vastly inflate the area of the MBR, and thereby produce
very poor rectangularity estimates. This goes against our stated
criteria.

Three new methods for measuring the rectangularity of re-
gions are developed by Rosin [6]. They are tested together with
the standard MBR method on synthetic and real data. It is con-
cluded that, while all the methods have their drawbacks, the
best two are the bounding rectangle and discrepancy methods.
The discrepancy method estimates rectangle sides in two ways,
and measures the agreement between the two. One of the ways
to measure the sides of a rectangle is to find the best ellipse that
corresponds to the region, and estimate the rectangle’s mea-
surements by using the minor and major axes of such an ellipse.
This method uses second order moments. The formulas for the
major axis a and minor axis b of the best fit ellipse are

a =
√

2[�20 + �02 +
√

(�20 − �02)
2 + 4�2

11]/�00,

b =
√

2[�20 + �02 −
√

(�20 − �02)
2 + 4�2

11]/�00.

Zunic and Rosin [5] described shape measures intended to
describe the extent to which a closed polygon is rectilinear
(each corner angle is 90◦ or 270◦). The two measures proposed
in Ref. [5] are based on the maximum ratio of perimeters mea-
sured by the two metrics. One metric is the Euclidean distance
while the other is the city block distance (sum of differences in
each coordinate). When a polygon rotates, the city block-based
perimeter changes. They prove that a polygon is rectilinear if
and only if there exists an angle � such that the city block-
based perimeter for the polygon rotated by � is the same as
the Euclidean distance based perimeter. They show that these
maximums for n-gons can be obtained by testing at most 4n

angles of rotation.
The most frequently used convexity measure in practice is

the ratio between the area of a polygon and area of its convex
hull [1]. Zunic and Rosin [2] discussed two measures that have
advantages when measuring convexity of shapes with holes.
Zunic and Rosin [2] first proposed to measure the ratio of

the largest convex polygon contained inside a given one, and
the area of that polygon, but noted that it is computationally
expensive to apply. Then they proposed to measure the ratio
of the Euclidean perimeter of a given shape and the Euclidean
perimeter of its convex hull. Convexity measures were also
studied in Refs. [3,4].

Rosin [8] described several measures for sigmoidality. It is
roughly a measure of the ‘S’ shape where the ‘fullness’ (thick-
ness) of the shape is not taken into account. Rosin [8] pro-
posed to fit cubic polynomials, but without the quadratic term,
to ensure a symmetric curve. Data are rotated so that princi-
pal axis is the x-axis, then least square fitting is applied. The
correlation coefficient is used to measure the quality of the fit.
Negative correlations are ignored, so that the interval is [0, 1].
The second approach in Ref. [8] is to consider tangent angles,
which look somewhat Gaussian. The function parameters are
determined by matching mean absolute values and variances,
the area under the curve is normalized to one, and correlation
is used to measure sigmoidality. The third approach in Ref. [8]
is based on curvature analysis. Positive and negative curvature
values are separated and summed over the curve to the left and
right of midpoint. The sums should be large and differences
small with respect to overall area of the curve with respect to
the central line of symmetry.

The contour smoothness measure was described in Ref. [9]
as a measure of circularity, and was adapted and converted
here into a measure of linearity. The idea remained the same,
but the resulting measurements were interpreted differently. In
the original scheme in Ref. [9], they proposed a measure of
circularity by dividing the area of a shape by the square of
its perimeter. For circles, they arrived at circularities of 1, and
values of less than 1 for other objects.

3. Measuring linearity

The algorithms that we proposed and analyzed for measur-
ing linearity are described here. They are called: average ori-
entations, rotation correlation or eccentricity, triangle heights,
triangle perimeters, contour smoothness, and ellipse axis ra-
tio. All of the algorithms give results which are invariant to
scaling, translation and rotation of sets of points. The average
orientation, triangle heights and triangle perimeters algorithms
use a parameter k which represents the sampling rate of points
taken to determine linearity. This k can be automatically de-
termined by each algorithm, for a sufficiently accurate linear-
ity measure, or for rejecting linearity of a set with sufficient
confidence.

3.1. Average orientations

Here, we first find the center of mass of the point set, and
its angle of orientation using moments. This function takes k

random pairs of points along the curve. It finds their slopes
(m), and finds the normals to their slopes (−m, 1). Each nor-
mal is saved as a vector (−m/norm, 1/norm) in array ab,
where norm = √m2 + 1 is a normalization factor. These vec-
tors are compared against the normal to the orientation line
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Fig. 1. Normals all oriented in the same direction.

determined by the moments formula above (−M, 1), where
M = tan(angle). The dot product of (−M, 1) and (−m, 1), for
each pair of points is evaluated as dp = mM + 1. If dp < 0,
the vector (m/norm, −1/norm) is stored instead. All normals
are oriented to point in the same general direction with respect
to the vector (−M, 1). They are pointed in the same direction
since the vectors would otherwise cancel each other out in the
case of a perfectly straight line, and give a linearity value near 0,
see Fig. 1.

These normals in array ab are averaged out, and the resulting
normal (A, B) is deemed to be the normal to the orientation
of the curve. The averaging is done separately for each vector
coordinate. The measure of linearity is defined as

√
A2 + B2.

In the case of a perfectly straight line, all of the unit vectors
would point in the same direction, and have a height of 1 with
respect to the orientation line. Otherwise, the resulting average
orientation would not be orthogonal to the orientation line, and
would have a magnitude less than 1.

Algorithm. Average orientations.

Input: array of points: Points= (Xi, Yi), 1� i�count, k;
Output: linearity value;

Array a, b; //normals to each line found in loop
Find center of mass (xc, yc) using moments;
Find slope M ← tan(angle) of orientation of curve
Vector (−M, 1) is the normal to this line;

For i = 1 to k do {
Take two random points (x1, y1), (x2, y2) from Points;
Find slope between them, call it m= (y2 − y1)/(x2 − x1);
a1←−m, b1← 1;
dp← mM+ 1;
Normalization factor norm← √

(m2 + 1);
If (dp < 0) then {a[i] ← (−a1/norm); b[i] ←
(−b1/norm); }
else {a[i] ← (a1/norm); b[i] ← (b1/norm); }

}

(A, B)←
(

k∑
i=1

a[i]/count,
k∑

i=1

b[i]/count,

)

linearity←√A2 + B2;
Repeat entire for loop for angle1 ← angle + �/2,
which results in a new linearity value, linearity1;
If (linearity < linearity1) then linearity← linearity1;

The linearity measure
√

A2 + B2 produces numbers in the
interval [2/�, 1] (for a circle it is 2/� ≈ 0.636), as proven in
Appendix I. This is normalized to [0, 1]:
Linearity← (linearity− 2/�)/(1− 2/�);
Output linearity.

3.2. Rotation correlation/eccentricity

Correlation is a standard tool in statistics for determining
whether there is a relation between two sets of points. If we
consider the x and y values of points in a space separately, and
apply correlation, we can directly measure linearity. Again, we
first find the center of mass of the set of points along with its
orientation. In this algorithm, the curve in question is rotated
so that its new orientation is at an angle of 45◦ from the x-
axis. Correlation is then done on the rotated curve. The linearity
measure is the absolute value of the measured correlation of
points (xi, yi) on the rotated curve.

Algorithm. Rotation correlation.

Input: array of points: Points= (Xi, Yi), 1� i�count, k;
Output: linearity value;

Find center of mass (Xc, Yc) using moments;
Find angle of orientation (angle) by the above formula;
angle1← angle+ �/2;
anglerot← �/4− angle; //anglerot is angle of rota-
tion of set of points to make them 45◦ to x axis.

Rotate all points in the Points array by (anglerot) with
respect to the origin, call new array rotPoints;
//Points in array rotPoints will be referenced as (x′i , y′i ).
Find Correlation of points (x′i , y′i ), 1� i�count;

If (Correlation < 0) then Correlation←−Correlation;

Repeat entire procedure for angle1;
In this case, anglerot← �/4− angle1;
Find correlation (Correlation1) according to new anglerot;
If (Correlation>Correlation1) then Linearity←Correlation;
Else Linearity← Correlation1;
Output linearity; //already normalized to [0, 1]

Eccentricity was the simplest measure to adapt to linearity
that we could find. It was also used in Ref. [9]. The output of
this algorithm is already in the interval [0, 1], so there was no
need to normalize it. For a disc, this measure outputs 0, for a
line, it outputs 1 since lines are eccentric.

Algorithm. Eccentricity.

Input: array of points: Points= (Xi, Yi), 1� i�count;
Output: Linearity value;

Find center of mass (Xc, Yc) using moments;
Find second order moments: �11, �02, and �20;

linearity←
√

(�20 − �02)
2 + 4�2

11

�20 + �02
.



M. Stojmenović et al. / Pattern Recognition 41 (2008) 2503–2511 2507

Fig. 2. Triangle formed by 3 random points, and its height h.

We will now prove the following theorem:

Theorem 1. Rotation correlation and eccentricity always yield
the same linearity measures.

Proof. It is well known that the correlation measure is invariant
to translation of data. Therefore we can translate data so that
center of mass is moved to the origin, and thus �01 = �10 = 0.
The correlation measure is then transformed into the following
form:

Correlation0= �11/
√

�20�02.

When the orientation line coincides with the x-axis, the
angle is 0, and from 0.5 ∗ arctan(2�11/(�20 − �02)) = 0 we
obtain �11 = 0. Rotation around the origin for an angle A

moves a point with coordinates (x, y) to point (x cos A −
y sin A, x sin A + y cos A). We have applied rotation for the
angle �/4. When this is applied to every point from the set, the
correlation will change to correlation1 = (�20 − �02)/(�20 +
�02), which can be verified by straightforward algebraic
manipulation.

On the other hand, the linearity by eccentricity formula
is invariant with respect to rotation. Consider the case when
the orientation line coincides with the x-axis. Then �11 = 0
and the formula is transformed to |�20 − �02|/(�20 + �02).
This is the same formula as |correlation1|. The pos-
sible change in sign has been corrected by the algo-
rithm that only considers the absolute value of correla-
tion, and therefore the two methods always give the same
result. �

3.3. Triangle heights

Here, we take k triplets of random points from the set and
compute the heights h to the longest side of the triangles
that the triplets form. This h value is divided by the longest
side c of the triangle to normalize the measure. This value
is called hc. We use the average of these khc values as a
linearity measure of the set of points. Fig. 2 illustrates this
point.

Obviously, a low average of hc would represent a linear set of
lines. Therefore, the average hc value is adjusted to fit the norm
of higher linearity values representing linear sets of points. The
minimum value of hc is 0. The maximum ratio for a height of
a triangle is obtained in an equilateral triangle. In such cases,
h = √3a/2, where a is the length of a side of an equilateral

triangle, and the ratio is
√

3/2. To define a measure that will
allocate 1 to linear points, and 0 to the considered case of three
vertices of an equilateral triangle, each hc value is adjusted as
follows:

hc= 1− (2hc/
√

3).

The range of obtained linearity values of this algorithm
are still in the range of (0.66, 1) for the examples that we
tested. The minimum value of 0.66 is obtained for circles.
We stretch out this interval by adjusting the linearity as
follows:

linearity= (hc− 0.66)/0.34.

This adjustment produces results in the range of [0, 1].

Algorithm. Triangle heights.

Input: array of points: Points= (Xi, Yi), 1� i�count, k;
Output: linearity value;

Int count; //number of input points on the curve
Float sumh← 0; //sum of all h values

For 1 to k do {//k is set to 500
Take (x1, y1), (x2, y2), (x3, y3) from Points at random;
Find distances between them: a, b, c; //a�b�c

Find the equation of line passing through the two se-
lected points with distance c, in the form Ax + By +
e = 0;
//Let point (u, v) be the point from the triplet (x1, y1),
(x2, y2), (x3, y3), that is not on the line c.
Height h← (Au+ Bv + e)/

√
A2 + B2.

If (h < 0) then h←−h;
h← h/c;
h← 1− (2h/

√
3)

sumh← sumh+ h;
}
linearity← sumh/k;
linearity← (linearity− 0.66)/0.34;
if linearity < 0 then linearity← 0.

3.4. Triangle perimeters

This method is similar to the previous one in the sense
that we take k triplets of random points from the set and
compute a variation of the perimeters of the triangles that the
triplets form. The three sides of the triangle are labeled a, b

and c, where a�b�c. The measure that we are interested
in is p = (2c − a − b)/c. If these three points form a trian-
gle which is degenerate in the form of a line, then p tends
to 1.

The minimum value is 0 for the vertices of an equilateral
triangle. We take the average value p to measure linearity. The
linearity measure of circles is found to be 0.76. The value
0.76 was the lowest obtained p value in our experiments, and
was therefore mapped to 1. Therefore, we need to stretch the
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resulting numbers over the interval [0, 1]:
linearity= (p − 0.76)/0.24.

Although p can have values of 1 in theory (for the set
of 3 points which are the vertices of an equilateral tri-
angle), in practice the random triplets rarely produce an
equilateral triangle, and experimentation shows that it is
best to stretch the linearity interval using the parameters
shown.

Algorithm. Triangle perimeters.

Input: array of points: Points= (Xi, Yi), 1� i�count, k;
Output: Linearity value;

Float sump← 0; //sum of all p values
For 1 to k do { //k is set to 500

Take (x1, y1), (x2, y2), (x3, y3) from Points at random;
Find distances between them: a, b, c; //a�b�c

p← (2c − a − b)/c.
sump← sump+ p;

}
linearity← sump/k;
linearity← (linearity− 0.76)/0.24
if linearity < 0 then linearity← 0.

3.5. Contour smoothness

The original smoothness formula in Ref. [9] was defined
as 4�S/P 2. In their formula, S is the area of the shape, and
P is its perimeter. This is another measuring scheme that
was adapted for linearity. It bases its measurements on the
area of a shape divided by the square of its perimeter. This
measure was inspired by the compactness measure. We did
not take the area of the entire shape into consideration at
once. Instead, we once again applied our technique of sam-
pling the point set by taking triplets of points, and averaging
out their triangular areas. Each triplet of points produces a
smoothness value in the form of area/perimeter2. The max-
imum value for area divided by the triangle perimeter is√

3/36 (for an equilateral triangle). After smoothness values
are averaged to produce value sums, the result is adjusted as
follows:

sums= 36 sums/
√

3.

This limits sums to a value of 1. We reversed the meaning
of this smoothness measurement by taking the compliment of
the obtained value. The measured value for circles then became
0.45. The final measure is obtained by stretching out the result
on the interval [0, 1], where

linearity= (1− sums− 0.45)/0.55.

Algorithm. Contour smoothness.

Input: array of points: Points= (Xi, Yi), 1� i�count, k;
Output: Linearity value;

Float sums← 0; //sum of all s values
For 1 to k do { //k is set to 500

Take 3 points (x1, y1), (x2, y2), (x3, y3) from Points
array; //points should not be close to each other.
Find distances between them: a, b, c; //a�b�c

p← a + b + c;

Find area of the triangle formed by these 3 points: area;
Float s ← area/(p∗p);
sums← sums+ s;
}
sums← (sums∗36)/

√
3; //normalization factor

linearity← (1− sums− 0.45)/0.55;
if linearity < 0 then linearity← 0.

3.6. Ellipse axis ratio

Here, we use the idea of measuring rectangularity as pro-
posed in Ref. [6], and adapt it to measuring linearity. The con-
cept is similar to the eccentricity measurement. We first find the
center of mass and the first and second order moments of the
set of input points, and then find the values of the major and
minor axis of the best fit ellipse as determined by the formulas
in Ref. [6]. The linearity value is given as 1-minor axis/major
axis.

Algorithm. Ellipse axis ratio.

Input: array of points: Points= (Xi, Yi), 1� i�count, k;
Output: Linearity value;

Find center of mass (Xc, Yc) using moments;
Find moments: �00, �11, �02, and �20;
Find value for major axis a; //see literature review
Find value for minor axis b; //see literature review
linearity← 1− b/a.

4. Experimental data

We develop seven algorithms which assign linearity mea-
sures to finite sets of points (two of them are identified to be
the same). These algorithms are implemented on Windows ma-
chines in C + + using Intel’s computer vision library of ba-
sic functions called OpenCV. The input to each algorithm is
a black and white image of size 400 × 400 pixels with white
pixels representing the background, and black pixels repre-
senting the curves (set of pixels) to be tested for linearity.
Each point in the image can be referenced with two integers
(xi, yi).

The set of test images is seen in Fig. 3. All 30 are examined by
each algorithm. Their linearity values are presented in Table 1.
All of the digital points in the solid figures (circle, hexagon, etc.)
are taken into consideration when evaluating linearity. Linearity
values for “solid” shapes are very similar to the linearity values
of just their borders.

The basic framework of each algorithm involved extract-
ing the black pixels from the image and putting them into an
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Fig. 3. Test examples.

Table 1
Results of linearity algorithms

AO RC/E TH TP CS EAR AHP SDH SDA

1 99 100 99 100 98 100 100 0.0 0.8
2 88 99 75 86 69 90 86 16.8 10.8
3 83 97 64 78 57 87 83 17.0 14.9
4 91 99 82 91 77 94 81 16.3 8.1
5 88 98 74 86 67 91 81 11.8 11.4
6 73 92 53 64 45 80 78 17.9 17.4
7 80 93 59 71 51 81 78 18.3 15.5
8 95 99 85 96 79 93 76 8.9 7.6
9 85 98 75 88 68 90 71 18.9 10.8

10 59 73 58 69 51 61 66 20.9 8.0
11 81 97 70 82 63 83 62 23.7 11.7
12 42 65 42 53 33 54 61 21.2 11.4
13 61 83 40 49 35 70 56 21.1 18.4
14 27 50 13 17 10 43 54 22.6 16.5
15 72 86 64 81 53 72 52 22.8 11.8
16 53 61 7 41 32 12 50 21.7 21.7
17 49 71 30 39 24 59 49 25.1 17.8
18 55 83 36 46 29 69 45 17.8 20.4
19 29 48 19 25 16 41 40 16.5 12.5
20 74 92 53 65 46 79 40 20.3 17.0
21 62 79 55 71 44 66 35 25.2 12.3
22 49 71 33 43 26 59 27 18.7 16.6
23 17 28 15 19 12 25 22 17.1 6.1
24 56 74 26 36 20 61 20 16.4 21.4
25 12 19 10 6 13 17 20 18.1 4.7
26 1 1 2 3 2 1 18 18.3 0.8
27 44 79 12 57 42 65 17 13.4 23.1
28 7 14 1 4 0 13 15 19.5 6.0
29 2 6 10 13 7 6 8 7.3 3.8
30 3 0 6 1 3 0 0 0.9 2.3

Corr: 0.859 0.803 0.856 0.833 0.849 0.809

unordered list. This list of unordered points would be passed
to each algorithm for processing. The output of each algorithm
would be a real number in the interval [0, 1] identifying the

linearity measure of the set of points. A 1 means perfectly lin-
ear, whereas lesser values mean the shapes are less and less
linear.
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Fig. 4. Convergence test lines.

The table outlining the results of all six algorithms is shown
below. The columns are labeled after the algorithms: average
orientations (AO), rotation correlation and eccentricity (RC/E),
triangle heights (TH), triangle perimeters (TP), contour smooth-
ness (CS) and ellipse axis ratio (EAR). The average human
perception column (AHP) shows the average results per fig-
ure of human measurements. The standard deviation of human
perception (SDH) is seen in the next column, followed by the
standard deviation of algorithms (SDA).

The comparison to human perception was done by correlat-
ing the results of each algorithm with the AHP column. The
correlation values of each algorithm to the average human mea-
surements are seen at the bottom of the table. According to
these measurements, we conclude that the AO algorithm pro-
duced the best results. All of the algorithms produced relatively
similar results, but the RC/E method showed itself to be the
weakest when compared to the human average. The k value for
the AO, TH and TP algorithms was 500 for the results seen in
Table 1.

4.1. Convergence of linearity measures to 1

We also tested all of the linearity measures on a set of images
seen in Fig. 4. The images in Fig. 4 are all rectangles that
become progressively elongated. The first rectangle is 30 pixels
wide and 20 pixels high. Each successive rectangle has the same
height as the first one, but is 20 pixels wider than its predecessor.
These test images are devised such that each image is more
linear than its predecessor and less linear than its successor.

Linearity algorithms that function well should all produce
linearity measures that follow this trend. The results of the lin-
earity algorithm on the above given test set are seen in Table 2.
We notice that all of the algorithms generally follow the trend
of increasing linearity values. There are, however, some dis-
crepancies in the results in the algorithms that rely on sample
size such as AO, TH and TP. The RC algorithm shows contin-
uously growing linearity measures since it is deterministic and
does not rely on sample set size. Overall, all of the algorithms
converge to perfect linearity.

Table 2
Convergence results

AO RC TH TP CS EAR

1 52.9 68.5 55.2 66.5 47.5 56.8
2 60.9 86.9 70.7 78.6 64.7 73.6
3 77.4 93.7 80.6 88.2 75.8 82.0
4 87.6 96.5 85.7 91.2 82.0 86.7
5 87.5 97.9 86.6 91.8 83.1 89.6
6 86.1 98.6 90.1 93.1 87.6 91.5
7 92.7 99.0 93.7 96.8 91.7 93.0
8 92.6 99.3 95.2 97.1 94.0 94.0
9 95.3 99.5 94.6 97.6 93.0 94.8

10 96.9 99.6 96.8 98.5 95.7 95.5

5. Conclusions

We proposed and tested several measures of linearity of fi-
nite point sets. This appears to be the first study of linearity in
literature. In addition to computer vision applications, the pro-
posed linearity measures have potential applications in manu-
facturing, for estimating the linearity of an axis of an object
[10,11].

There are a number of possible extensions of this work. We
believe that most of the presented measures can be extended
to three dimensions and even further to arbitrary dimensions,
to measure flatness of a finite set of points. We are currently
extending this work to measure linearity of an ordered set of
points. The proposed measures are adopted by also consider-
ing the ordering of points when projected along the orientation
line. We are also applying such a measure to polygonization
of curves.

Appendix A. Minimum average orientation measure

In Lemma 1, the number k of point pairs is approaching
infinity, and the set of points on the circle is assumed to be
infinite and consisting of all points on the circle perimeter.
The average orientation measure in the following lemma and
theorem refers to measurement before applying normalization,
which brings the linearity measure of a circle from 2/� to 0.

Lemma 1. Average orientation measure of set of points on the
perimeter of a circle is 2/� ≈ 0.6366.

Proof. For given orientation line with angle �, and k pairs of
points, with angles �i , 1� i�k, the measure is

k∑
i=1

| cos(�i − �)|/k.

Because of symmetry, the measure remains the same for any
orientation line. The measure is then

1/�
∫ �

0

(
k∑

i=1

| cos(ai − �)|/k d�

)
,
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obtained when all possible orientation lines are considered. The
later measure is equal to

1/(�k)

k∑
i=1

∫ �

0
| cos(�i − �)|/k d�.

However,∫ �

0
| cos(�i − �)| d�=

∫ �

0
| cos �| d�

=
∫ �/2

−�/2
cos � d�

= 2
∫ �/2

0
cos � d�= 2.

Therefore the measure is

1/(�k)

k∑
i=1

2= 2/�. �

Theorem 2. The average orientation measure of arbitrary
object is �2/�, with respect to at least one orientation
line.

Proof. The proof is by contradiction. Suppose that the linear-
ity measure is < 2/� for all orientations. Let �i , 1� i�k, be
measured sample orientations. Thus

k∑
i=1

| cos(�i − �)|/k < 2/�

for any �. Integrate this over all �. Then

S =
∫ �

0

k∑
i=1

| cos(�i − �)|/k d� < �2/�= 2.

Thus

S =
k∑

i=1

(1/k)

∫ �

0
| cos(�i − �)| d� < 2.

Therefore, there exist i such that∫ �

0
| cos(�i − �)| d� < 2.

But∫ �

0
| cos(�i − �)| d�= 2

(see Lemma 1), which is a contradiction. �
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